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Abstract

There are at least three groups and each person has to be identified as a

member of one of these groups. A social decision rule determines the member-

ships for the groups based on individual opinions on who belong to what groups.

Our main axiom is the requirement that the membership for each group, say the

group of J’s, should depend only on the opinions on who is a J and who is not

(that is, independently of the opinions on who is a K or an L). This shares the

spirit of Arrow’s independence of irrelevant alternatives and therefore is termed

independence of irrelevant opinions. Our investigation of the multinary group

identification and the independence axiom reports a somewhat different message

from the celebrated impossibility result by Arrow (1951). In particular, we show

that the independence axiom, together with symmetry and non-degeneracy, im-

plies the liberal rule (each person self-determines her own membership), which

gives a theoretical foundation for the self-identification method commonly used

for racial or ethnic classifications.
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1 Introduction

In countries with diverse demographic characteristics such as China, India, Russia,

the United Kingdom, the United States, etc., ethnic or racial classification serves as

a basis for evaluating public policies, government bodies, and other social institutions

in terms of equal opportunity and anti-discrimination. This classification issue is often

complicated by the fact that memberships for a large number of ethnic groups should be

determined all at the same time. For instance, the 2011 UK Census recognizes eighteen

ethnicity categories1 and the 2010 China Census fifty-six.2

Group identification (Kasher and Rubinstein, 1997) formalizes the problem of classi-

fying individuals. However, the literature largely focuses on the binary case (Samet and

Schmeidler, 2003; Sung and Dimitrov, 2005; Dimitrov, Sung and Xu, 2007; Houy, 2007;

Miller, 2008; Çengelci and Sanver, 2010; Ju, 2010, 2013). In the binary model, there

is only one group, say the group of J’s, whose membership is to be determined. Each

person has an opinion on who belong to the group. The question is how to aggregate

individual opinions and identify members (J’s) and non-members (non-J’s).

Such a binary model, when applied to multinary problems involving three or more

groups, dismisses all opinions on the other groups, say K or L. Person i may view person

j not to be in J but to be in K or L; in either case, the identification of group J through

the binary model remains the same. Thus, implicit in the binary model is the principle

that the identification of the group under question should not be tainted by irrelevant

opinions on the other groups, which is reminiscent of Arrow’s independence of irrelevant

alternatives (Arrow, 1951).3 We propose this principle as an axiom, termed indepen-

dence of irrelevant opinions, for social decision rules over multinary group identification

problems. Despite the wide use of multinary classifications in the aforementioned coun-

tries and the celebrity of the independence axiom in Social Choice Theory, as far as

we know, there has been no earlier investigation of the multinary group identification,

not to speak of the independence axiom therein. Our main objective is to scrutinize

1Office for National Statistics (HTTP://WWW.ons.gov.uk/ons/guide-method/measuring-
equality/equality/ethnic-nat-identity-religion/ethnic-group/index.html). Retrieved July 25, 2014.

2National Bureau of Statistics of the People’s Republic of China
(HTTP://WWW.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm). Retrieved July 25, 2014.

3See also Hansson (1969) and Fishburn (1970) for their discussion on the role of the independence
axiom in Arrow’s impossibility theorem.
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independence of irrelevant opinions in the multinary group identification.

In our model, there are three or more groups, and each person needs to be identified

as a member of one of the groups. Taking as input individual opinions on who belong to

what groups, a (social decision) rule determines memberships for the groups. Our main

axiom for rules, independence of irrelevant opinions, requires that the membership for

each group should be decided based solely on the opinions on who belong to that group

and who do not (that is, independently of the opinions on who belong to the other

groups). It is a variant of Arrow’s independence axiom for preference aggregation rules

and is vacuous in the binary group identification, as is Arrow’s independence when

there are only two alternatives.

We show that independence of irrelevant opinions, together with the basic condition

of non-degeneracy (there should be no person who is always put in one fixed group,

regardless of opinions), implies a simple method of identifying each person using only

“one vote” (Theorem 1). We call these rules the one-vote rules, noting the connection

with the one-vote rules in the binary model (Miller, 2008). For example, a dictatorial

rule determines each person’s membership following the dictator’s opinion; each person

is a J when, and only when, the dictator believes so. Another example is the liberal

rule, according to which everyone self-determines her membership. There are many

other one-vote rules as well. However, when symmetry (the names of persons should

not matter; Samet and Schmeidler, 2003) is added, the liberal rule is the unique rule

satisfying the three axioms (Theorem 2). Therefore, our investigation of multinary

group identification and the independence axiom therein reports a somewhat different

message from the well-known impossibility result in preference aggregation theory by

Arrow (1951) and Blau (1957).4

The liberal rule, or the self-identification method, is the most common way of identi-

fying one’s ethnicity and race. For example, the 2011 UK Census uses this method and

the Office for National Statistics of the UK government explains the reason as follows:

Membership of an ethnic group is something that is subjectively meaningful to

the person concerned, and this is the principal basis for ethnic categorization in

the United Kingdom. So, in ethnic group questions, we are unable to base ethnic

4Blau (1972) provides a simpler proof of Arrow’s theorem when there are at least five alternatives.
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identification upon objective, quantifiable information as we would, say, for age

or gender. And this means that we should rather ask people which group they

see themselves as belonging to.5

The subjective nature of the classification is the main reason for using the census

where all persons concerned can report their opinions. Nevertheless, the Office does not

provide a more fundamental basis for the self-identification method or the principles

underlying it. Our characterization of the liberal rule by independence of irrelevant

opinions, symmetry, and non-degeneracy reveals what those principles can be and serves

as a formal justification.

Our results rest chiefly on independence of irrelevant opinions and the assumption

that there are three or more groups. In the binary model, independence of irrelevant

opinions has no bite, and there are numerous rules other than the liberal rule satisfying

both symmetry and non-degeneracy. The consent rules by Samet and Schmeidler (2003)

are examples. The liberal rule is a special case in this family, with the minimum

consent quotas. Depending on the choice of consent quotas, a consent rule can also be

“democratic” in that everyone’s vote counts equally; e.g., the majority rule with the

consent quota n+1
2

, where n is the number of persons.

One important reason why independence of irrelevant opinions turns out so strong

is that social decisions in our model identify each person as a member of exactly one

group; thus, decisions partition the set of persons into groups (no one belongs to none of

the groups or to two or more groups at the same time).6 When the partitioning property

in our model is relaxed slightly, our results no longer hold and the family of rules satisfy-

ing independence of irrelevant opinions and non-degeneracy becomes quite diverse, in-

cluding all extended versions of the consent rules.7 [See p. 2 in ‘‘Supplementary

Note for Reviewers’’ at the end of this manuscript, for the definition of

the extended consent rules.]

5Office for National Statistics, Ethnic Group Statistics: A Guide for the Collection and Classification
of Ethnicity Data (2003, p. 9).

6The role of this partitioning constraint is discussed more explicitly in our companion paper, Cho
and Ju (2014).

7We refer readers to Cho and Ju (2014) for more details on the extended model without the
partitioning property and the extended consent rules. [These related materials from Cho

and Ju (2014) are copied in ‘‘Supplementary Note for Reviewers’’ at the end of this

manuscript.] See also Footnote 11.
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In the literature on preference aggregation, Arrow’s independence axiom, together

with a few fairly mild axioms, implies quite an unequal distribution of decision power:

only a single person or a group of persons is decisive (Arrow, 1951; Blau, 1957, 1972;

Guha, 1972; Mas-Colell and Sonnenschein, 1972). In the literature on aggregation of

equivalence relations, Fishburn and Rubinstein (1986a, 1986b) and Dimitrov, Marchant,

and Mishra (2012) consider a variant of Arrow’s independence axiom (Fishburn and

Rubinstein call it “binary independence”) and establish similar results. In contrast to

these, our independence axiom admits more diverse power distributions, including both

the equal distribution of power as in the liberal rule and the most unequal distribution

of power as in the dictatorial rules.

Of particular relevance to our investigation is Miller (2008). He studies binary iden-

tification problems in a model where the group whose membership is to be decided can

vary. He characterizes the family of one-vote rules (similarly defined in the binary setup)

but his results are based on the axiom of “consistency”, requiring that decisions across

groups be consistent with respect to the conjunction and disjunction of groups (“J and

K”, “J or K”).8 A proper comparison of our paper and Miller (2008) requires an ex-

tended model that subsumes both models. In our companion paper, Cho and Ju (2014),

we introduce an extended setup where social decision rules need to identify not only two

or more groups but all derived groups that are obtained by conjuntion or disjunction

of the basic groups.[See ‘‘Supplementary Note for Reviewers’’ at the end of

this manuscript, which provides these related materials in Cho and Ju (2014).]

Using this extended setup, we find that an independence axiom9, much stronger than

our independence of irrelevant opinions, is implicitly assumed in Miller (2008) and, to-

gether with his consistency axiom, plays a critical role in proof. Although the family of

rules our set of axioms characterizes is similar to Miller’s (2008), neither his strong in-

dependence nor consistency is used in our results. Moreover, independence of irrelevant

opinions, non-degeneracy, and a certain unanimity axiom characterize a larger family

8He calls the axiom “separability”. Meet separability requires the equivalence of (i) the conjunction
of the two decisions for group “J” and group “K”; and (ii) the decision for group “J and K”. Join
separability requires the equivalence of (i) the disjunction of the two decisions for group “J” and group
“K”; and (ii) the decision for group “J or K”.

9It requires, for instance, that the decision on group “J and K” be independent of the opinions on
group J or the opinions on group K, which are quite relevant.
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of rules than the one-vote rules Miller (2008) characterizes. [See Proposition 1 in

‘‘Supplementary Note for Reviewers’’.]

The rest of the paper proceeds as follows. In Section 2, we introduce the model and

axioms for group identification. We establish some preliminary results in Section 3.

The main characterization results are in Section 4. We conclude with a few remarks in

Section 5.

2 The Model

There are n persons, each of whom needs to be identified as a member of one among

m groups. Let N ≡ {1, · · · , n} be the set of persons and G ≡ {1, · · · ,m} the set

of groups. We assume, unless noted otherwise, that n ≥ 2 and m ≥ 3. Each person

i ∈ N has an opinion on who she believes are the members of each of these groups.

The opinion is represented by Pi ≡ (Pij)j∈N∈ GN , where for all j ∈ N and all k ∈ G,

Pij = k when person i views person j as a member of group k. Individual opinions

P1, · · · , Pn constitute a (identification) problem P ≡ (Pij)i,j∈N , an n× n matrix. Let

P ≡ GN×N be the set of all problems. A domain D ⊆ P is a non-empty subset

of P . We call P the universal domain . When m = 2, our model reduces to the

standard, binary group identification model (Kasher and Rubinstein, 1997; Samet and

Schmeidler, 2003): in essence, there is only one group and each person has an opinion

about who belong to the group.

A decision is a profile x ≡ (xi)i∈N ∈ GN , where, for all i ∈ N and all k ∈ G, xi = k

means that person i belongs to group k. Given a domain D, a social decision rule,

briefly a rule f : D → GN associates with each problem in D a decision. For example,

a plurality rule puts each person i in the group for which she wins the most votes,

namely, group k such that for all k′ ∈ G, |{j ∈ N : Pji = k}| ≥ |{j ∈ N : Pji = k′}|
and when the inequality holds with equality, the tie-breaking condition of k ≤ k′ is

satisfied.10 Different tie-breaking methods lead to different plurality rules.

In the binary model, the consent rules (Samet and Schmeidler, 2003) allow each

person i to determine her own membership if her opinion about herself wins a sufficient

10Any linear ordering of the groups can be used as a tie-breaking method.
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consent from others (that is, the number of persons agreeing with i, Pji = Pii, is no less

than a certain quota). When the consent quota equals the minimum level of 1, everyone

self-determines her own membership; i.e., for all P ∈ D and all i ∈ N , i belongs to

group Pii. This rule is called the liberal rule . When a consent rule is not liberal (the

consent quota is at least 2), it is possible that a person does not win a sufficient consent

from others for the group she claims to be a member of. With the insufficient consent,

she fails to self-determine her membership, which in the binary model, means that she

belongs to the other group. In our multinary model, this case of insufficient consent is

indeterminate since there are two or more other groups.11 Hence, none of the consent

rules except for the liberal rule is well-defined in our model.

Nevertheless, we can define similar rules using a mapping δ : G → G, associating

with all k ∈ G the default decision against group k, denoted by δk ∈ G. Group δk

serves as the default membership for a person who considers herself belonging to group

k but fails to win a sufficient consent from others. For all k ∈ G, let qk ∈ N be the con-

sent quota for group k. The consent rule with default decisions δ ≡ (δk)k∈G

and quotas q ≡ (qk)k∈G, denoted by fδ,q, is defined as follows: for all P ∈ D and

all i ∈ N with Pii = k,

(i) if |{j ∈ N : Pji = k}| ≥ qk, then f δ,qi (P ) = k; and

(ii) otherwise, f δ,qi (P ) = δk.
12

Under the consent rule f δ,q, each person i ∈ N belongs to either the group of her own

decision (Pii) or the opposite (δPii
). Clearly, when q1 = · · · = qm = 1, f δ,q coincides

with the liberal rule, whatever δ is.

11In order to allow for this indeterminacy, we may expand G to include “non-k” (¬k) for each k ∈ G.
Let Gex ≡ G∪{¬k : k ∈ G}. A quasi-decision is a profile x∈ GNex, possibly admitting an indeterminate
decision for some person, such as “non-k”, and a quasi-rule is a mapping f : P → GNex. The consent
rules by Samet and Schmeidler (2003) are examples of quasi-rules. Among them, only the liberal rule
is well-defined in our multinary model. It is evident that all consent quasi-rules satisfy independence
of irrelevant opinions (to be defined later) as well as non-degeneracy. Thus, our main results do not
hold for these quasi-rules.

12Our definition permits the possibility that for some k ∈ G, δk = k. For such k, whenever Pii = k,
fδ,q puts person i in group k. Now given (δ, q), define (δ′, q′) as follows: for all k ∈ G such that δk = k,
δ′k 6= k and q′k = 1; for all other k ∈ G, δ′k = δk and q′k = qk. Then fδ,q and fδ

′,q′ are equivalent.
Also, note that in the binary model by Samet and Schmeidler (2003), our definition coincides with
their definition of consent rules once qk + qδk ≤ n+ 2 is added, which is needed for their monotonicity
axiom.
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When there is a status quo group κ ∈ G where all persons initially belong, one can

define a consent rule that determines regrouping of all members in the status quo group

by setting, for all k ∈ G, δk = κ. Then each person either belongs to the group of her

own decision (Pii) or the status quo group (κ). Thus when she considers herself to be

in the status quo group, her opinion is decisive for her own membership. She needs

others’ consent only when she considers herself not belonging to the status quo group.

We discuss an extension of this idea and other related issues in Section 5

Axioms

Should a person belong to J because many others believe that she belongs to K rather

than to L? Should the membership for a certain group depend on opinions on the other

groups? The answer, obviously, will differ from context to context. Nevertheless, when

there is no concensus on how the groups are interrelated or no objective basis for judging

the correlation among the groups, any decision rule relying on a particular correlation

may incur social controversy, hard to be resolved with an agreement and possibly lead-

ing to conflicts among groups. Our main axiom requires cross-group independence.

Consider two problems, P and P ′, such that all persons agree on the membership for

group k; that is, each person i considers each person j to be a member of group k at P

if and only if she does so at P ′. They may differ on the membership for other groups

but if this difference is viewed as irrelevant when making a decision on who belong to

group k, it is natural to require that f(P ) and f(P ′) agree on the group-k membership.

Independence of Irrelevant Opinions. Let P, P ′ ∈ D and k ∈ G. Suppose that for

all i, j ∈ N , Pij = k if and only if P ′ij = k. Then for all i ∈ N , fi(P ) = k if and only if

fi(P
′) = k.

It is evident that the liberal rule satisfies independence of irrelevant opinions. There

are other rules as simple as the liberal rule, which also satisfy this axiom. They are

defined in Section 4. The consent rules with default decisions do not necessarily satisfy

the independence axiom; the membership for the default group against group k relies

on the opinions on group k. Nevertheless, on some restricted domains, they may do so.

Here is an example.
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Example 1. Suppose that group ν ∈ G is a null group (non-membership for any of

the other groups in G\{ν}) and consider the domain Dν ≡ {P ∈ P : for all i, j ∈ N ,

Pij ∈ G\{ν}} where all persons classify everyone into non-null groups in G\{ν} (they

all used to be just “Earthians” but now need to be classified into several subgroups in

G\{ν}, one of which they believe everyone belongs to; so ν is the group of Earthians who

are decided not to be a member of any of the subgroups in G\{ν}). On this domain Dν ,
all consent rules with the constant default decision of ν satisfy independence of irrelevant

opinions. This is because all problems in Dν share the common opinion on the null

group ν: no one ever believes anyone, including herself, to be in the null group. Thus,

with regard to this null group, independence of irrelevant opinions has no bite; with

regard to the other non-null groups k ∈ G\{ν}, it is evident from the definition that

the membership for group k depends only on the opinions on group k (who they believe

belong to k or not). 4

We also consider the following fairly standard axioms in the group identification

literature. Given a permutation π : N → N , for all P ∈ P , let Pπ ≡ (Pπ(i),π(j))i,j∈N

and fπ(P ) ≡ (fπ(i)(P ))i∈N . Permutation π changes the names of persons and Pπ is

the problem obtained by changing names through π. Name changes are only nominal

and shifts no fundamental content. Thus, it is reasonable to require that the decision

be unaffected by such nominal changes (Samet and Schmeidler, 2003).

Symmetry. For all P ∈ D and all permutations π : N → N such that Pπ ∈ D,

f(Pπ) = fπ(P ).

Our next axiom concerns the decision for “unanimous” opinion profiles: if all persons

consider all persons belonging to one group, say group k, then all persons should be

classified into group k.

Unanimity. For all k ∈ G such that kn×n ∈ D, f(kn×n) = k1×n.

A rule may be “degenerate” for a person in that there is one fixed group into which

the rule always classifies her, regardless of opinions. We require that such degeneracy

occur for no person. Clearly, this is weaker than unanimity.

Non-Degeneracy. For all i ∈ N , there are P, P ′ ∈ D such that fi(P ) 6= fi(P
′).
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3 Independence of Irrelevant Opinions and Decom-

posability

A problem contains binary information on the memberships for all groups. Thus, we

may “decompose” the problem into multiple binary problems, obtain binary decisions

for the latter, and combine them into a single decision. The combined decision may

or may not be the same as the decision a rule assigns to the initial problem. In this

section, we establish that independence of irrelevant opinions is almost equivalent to

requiring that the two decisions be the same.

More precisely, let B ≡ {0, 1}N×N . Given P ∈ P , for all k ∈ G, let BP,k ∈ B be the

binary problem concerning group k derived from P ; i.e., for all i, j ∈ N , (i) if Pij = k,

then BP,k
ij = 1; and (ii) if Pij 6= k, then BP,k

ij = 0. An (binary) approval function

ϕ : B → {0, 1}N associates with each binary problem B ∈ B a binary decision, namely,

a profile of 0’s and 1’s, where for all i ∈ N , ϕi(B) = 0 means the disapproval of i’s

membership and ϕi(B) = 1 means the approval of i’s membership. For all binary

problems B ∈ B, let B̄ ≡ 1n×n − B be the dual problem of B. Likewise, for all binary

decisions x ∈ {0, 1}N , let x̄ ≡ 11×n − x be the dual decision of x.

Using these definitions, each problem P ∈ P can be decomposed into m binary

problems, BP,1, · · · , BP,m. The next axiom requires that the decision for problem P be

identical to the combination of m binary decisions for the m binary problems assigned

by an approval function.

Decomposability. There is an approval function ϕ such that for all P ∈ D, all i ∈ N ,

and all k∈ G, fi(P ) = k if and only if ϕi(B
P,k) = 1.

In this case, we say that f is represented by ϕ.

We show that an approval function representing a decomposable rule satisfies the

following properties. Approval function ϕ is m-unit-additive if for all m binary

problems B1, · · · , Bm ∈ B,

∑
k∈G

Bk = 1n×n implies
∑
k∈G

ϕ(Bk) = 11×n. (1)

It is unanimous if ϕ(0n×n) = 01×n and ϕ(1n×n) = 11×n. The dual of ϕ, denoted
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ϕd, is the approval function such that for all B ∈ B, ϕd(B) = ϕ(B). We say that ϕ is

self-dual if ϕ = ϕd. Finally, ϕ is monotonic if for all B,B′ ∈ B such that B ≤ B′,

ϕ(B) ≤ ϕ(B′).

Proposition 1. Consider the universal domain (i.e., D = P). An approval function

represents a decomposable rule if and only if it is m-unit-additive. Also, if an approval

function is m-unit-additive, then it is unanimous, self-dual, and monotonic.

Proof. First, we prove the “if and only if” statement. Note that for all P ∈ P ,∑
k∈GB

P,k = 1n×n and that for all B1, · · · , Bm ∈ B with
∑

k∈GB
k = 1n×n, there

is P ∈ P such that B1 = BP,1, · · · , Bm = BP,m. This observation is enough to prove

the “if” part. Next, suppose that an approval function ϕ can represent a decomposable

rule. Then for all P ∈ P and all i ∈ N , there is exactly one k ∈ G with ϕi(B
P,k) = 1.

Since for all k′ ∈ G\{k}, ϕi(BP,k′) = 0,
∑

k∈G ϕi(B
P,k) = 1. Thus, ϕ is m-unit-additive.

Assume, henceforth, that ϕ is m-unit-additive. To prove that ϕ is unanimous, let

i ∈ N . Let B1 ≡ 1n×n, and for all k ∈ G\{1}, Bk ≡ 0n×n. Let s ≡ ϕi(1n×n) and

t ≡ ϕi(0n×n). Since
∑

k∈GB
k = 1n×n, 1 =

∑
k∈G ϕi

(
Bk
)

= s + (m − 1)t. Since

s, t ∈ {0, 1} and m ≥ 3, it follows that s = 1 and t = 0.

To prove that ϕ is self-dual, let B ∈ B. Let B1 ≡ B, B2 ≡ B, and for all k ∈
G\{1, 2}, Bk ≡ 0n×n. Since

∑
k∈GB

k = 1n×n, then by m-unit-additivity and unanimity,

11×n =
∑

k∈G ϕ
(
Bk
)

= ϕ(B) + ϕ(B). This gives ϕ(B) = ϕ(B).

Finally, to prove that ϕ is monotonic, let B,B′ ∈ B be such that B ≤ B′. Let i ∈ N .

If ϕi(B) = 0, then trivially, ϕi(B) ≤ ϕi(B
′). Thus, assume that ϕi(B) = 1. Let B1 = B

and B2 = B′. Let B3, · · · , Bm ∈ B be such that
∑

k∈GB
k = 1n×n (such B3, · · · , Bm

exist because B ≥ B′ and B1 + B2 = B + B′ ≤ 1n×n). Since
∑

k∈G ϕi
(
Bk
)

= 1 and

ϕi (B
1) = 1, 0 = ϕi (B

2) = ϕi(B′). Since ϕ is self-dual, ϕi(B
′) = ϕi(B′) = 1.

If f is independent of irrelevant opinions, then it can be “represented” by m approval

functions (ϕk)k∈G. To see this, let k ∈ G. Define an approval function ϕk : B → {0, 1}N

as follows: for all B ∈ B and all i ∈ N , ϕki (B) = 1 if and only if for some P ∈ P ,

BP,k = B and fi(P ) = k. Clearly, by independence of irrelevant opinions, ϕk is well-

defined13, and f is represented by (ϕk)k∈G; i.e., for all P ∈ P , all i ∈ N , and all k ∈ G,

13By independence of irrelevant opinions, for all P, P ′ ∈ P such that BP,k = BP
′,k = B, fi(P ) = k

if and only if fi(P
′) = k.
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fi(P ) = k if and only if ϕki (B
P,k) = 1. When all the approval functions are identical

(ϕ1 = · · · = ϕm), f is decomposable. Therefore, decomposability implies independence

of irrelevant opinions. The converse does not hold. As we show below, the essential

difference between the two axioms is non-degeneracy. To prove it, we use the following

lemma.

Lemma 1. On the universal domain (i.e., D = P), independence of irrelevant opinions

and non-degeneracy together imply unanimity.

Proof. Let f be a rule satisfying independence of irrelevant opinions and non-degeneracy.

Then there are approval functions (ϕk)k∈G representing f . Now we proceed in three

steps.

Step 1: For all i ∈ N , all P ∈ P, and all ` ∈ G\{fi(P )}, ϕ`i(0n×n) = 0.

Let i ∈ N and P ∈ P . Let k ≡ fi(P ). Let `, h ∈ G\{k} be distinct. Let P ′ ∈ P be

such that for all j, j′ ∈ N , (i) P ′jj′ = k if and only if Pjj′ = k; and (ii) P ′jj′ = h if and

only if Pjj′ 6= k. By independence of irrelevant opinions, fi(P
′) = fi(P ) = k, so that

fi(P
′) 6= `. Then ϕ`i(0n×n) = ϕ`i(B

P ′,`) = 0.

Step 2: For all i ∈ N and all k ∈ G, ϕki (0n×n) = 0.

Let i ∈ N . By non-degeneracy, there are P, P ′ ∈ P such that fi(P ) 6= fi(P
′). Let

k ≡ fi(P ) and ` ≡ fi(P
′). By Step 1, for all h ∈ G\{k}, ϕhi (0n×n) = 0. Similarly, for

all h ∈ G\{`}, ϕhi (0n×n) = 0.

Step 3: f is unanimous.

Suppose, by contradiction, that for some i ∈ N and k ∈ G, fi(kn×n) 6= k. Let

` ≡ fi(kn×n). Then ϕ`i(0n×n) = ϕ`i(B
kn×n,`) = 1, contradicting Step 2.

Now we prove the logical relation between independence of irrelevant opinions and

decomposability.

Proposition 2. On the universal domain (i.e., D = P), the combination of indepen-

dence of irrelevant opinions and non-degeneracy is equivalent to decomposability.

Proof. We already noted that decomposability implies independence of irrelevant opin-

ions. When a rule is decomposable, by Proposition 1, the approval function representing

it is unanimous. Therefore, the rule is also unanimous, and so non-degenerate.
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To prove the converse, let f be a rule satisfying independence of irrelevant opinions

and non-degeneracy. Then f is represented by a profile of m approval functions (ϕk)k∈G.

By Lemma 1, f is unanimous. Now we proceed in two steps.

Step 1: For all i ∈ N and all P ∈ P, fi(P ) is one of the entries of P .

Suppose, by contradiction, that for some i ∈ N and P ∈ P , fi(P ) is not one of the

entries of P ; i.e., for some k such that BP,k = 0n×n, fi(P ) = k. Let ` ∈ G be one of

the entries of P and consider `n×n ∈ P . Then BP,k = 0n×n = B`n×n,k. Thus applying

independence of irrelevant opinions to P and `n×n, fi(P ) = k implies fi(`n×n) = k,

which contradicts unanimity.

Step 2: ϕ1 = ϕ2 = · · · = ϕm.

Suppose, by contradiction, that there are k, ` ∈ G such that ϕk 6= ϕ`. Then there

are B ∈ B and i ∈ N such that ϕki (B) 6= ϕ`i(B). Without loss of generality, assume

that ϕki (B) = 0 and ϕ`i(B) = 1. Let h ∈ G\{k, `}. Let P ∈ P be such that for all

j, j′ ∈ N , (i) Pjj′ = h if and only if Bjj′ = 0; and (ii) Pjj′ = k if and only if Bjj′ = 1.

Similarly, let P ′ ∈ P be such that for all j, j′ ∈ N , (i) P ′jj′ = h if and only if Bjj′ = 0;

and (ii) P ′jj′ = ` if and only if Bjj′ = 1. By construction, BP,k = BP ′,` = B. Since

ϕki (B) = 0 and ϕ`i(B) = 1, it follows that fi(P ) 6= k and fi(P
′) = `. By Step 1,

fi(P ) 6= k implies fi(P ) = h. Note that BP,h = BP ′,h. Hence, applying independence

of irrelevant opinions to P and P ′, fi(P ) = h implies fi(P
′) = h, which contradicts

fi(P
′) = `.

Note that by Proposition 2 and Lemma 1, decomposability also implies unanimity.

4 Main Results

In this section, we present our main characterization results. We first characterize the

rules satisfying independence of irrelevant opinions and non-degeneracy. These rules

are represented by the “one-vote” approval functions that Miller (2008) introduces in

the binary identification model. An approval function ϕ is a one-vote approval

function if for all i ∈ N , there are j, h ∈ N such that for all B ∈ B, ϕi(B) = Bjh. A

rule f is a one-vote rule if for all i ∈ N , there are j, h ∈ N such that for all P ∈ P ,

13



fi(P ) = Pjh. The one-vote rules are decomposable, represented by one-vote approval

functions; moreover, they are the only decomposable rules.

Theorem 1. On the universal domain (i.e., D = P), the following are equivalent.

(i) A rule is independent of irrelevant opinions and non-degenerate;

(ii) A rule is decomposable;

(iii) A rule is a one-vote rule.

Proof. By Proposition 2, we only have to show the equivalence of (ii) and (iii). We

only prove the non-trivial implication, “(ii) implies (iii)”. Consider a decomposable rule

represented by an approval function ϕ. It suffices to show that ϕ is a one-vote approval

function. We use the following notation in the proof. Let B ∈ B. Let |B| ≡
∑

i,j∈N Bij

be the number of 1’s in B. Also, B is a unit binary problem if |B| = 1. For all

i, j ∈ N , let U ij ∈ B be the unit binary problem such that U ij
ij = 1. Now let i ∈ N .

We proceed in two steps.

Step 1: There are j, h ∈ N such that ϕi
(
U jh
)

= 1.

By Proposition 1, ϕ is m-unit-additive, unanimous, self-dual, and monotonic. Sup-

pose, by contradiction, that for all B ∈ B,

|B| = 1 implies ϕi (B) = 0. (2)

We prove by induction that for all B ∈ B, ϕi(B) = 0.

Let ` ∈ N be such that ` < n2 and assume that for all B ∈ B,

|B| ≤ ` implies ϕi (B) = 0. (3)

Let B ∈ B be such that |B| = ` + 1. Then |B̄| = n2 − ` − 1 and there are B1 and

B2 such that |B1| = 1, |B2| = ` and B1 + B2 + B̄ = 1n×n. By m-unit-additivity

and unanimity, ϕi(B
1) + ϕi(B

2) + ϕi(B̄) = 1. Since by the induction hypothesis (3),

ϕi(B
1) = ϕi(B

2) = 0, we obtain ϕi(B̄) = 1. By self-duality, ϕi(B) = 0. Hence, for all

B ∈ B,

|B| ≤ `+ 1 implies ϕi (B) = 0.

Therefore, (2) and the induction argument prove that for all B ∈ B, ϕi(B) = 0. In
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particular, ϕi(1n×n) = 0, which contradicts unanimity of ϕ.

Step 2: For all B ∈ B, ϕi(B) = 1 if and only if Bjh = 1.

Let j, h ∈ N be such that ϕi(U
jh) = 1. Let B ∈ B. If Bjh = 1, then since B ≥ U jh,

monotonicity implies that ϕi(B) ≥ ϕi
(
U jh
)

= 1. If Bjh = 0, then since B ≤ U jh,

monotonicity and self-duality imply that ϕi(B) ≤ ϕi

(
U jh
)

= 0.

When n ≥ 3, among the one-vote rules, there is only one symmetric rule: the liberal

rule.

Theorem 2. Assume that there are at least three persons (n ≥ 3). On the universal

domain (i.e., D = P), the following are equivalent.

(i) A rule is independent of irrelevant opinions, non-degenerate, and symmetric;

(ii) A rule is decomposable and symmetric;

(iii) A rule is the liberal rule.

Proof. We prove that (ii) implies (iii). Let f be a rule satisfying decomposability and

symmetry. By Theorem 1, it is a one-vote rule. Then there is a function h : N → N×N
such that for all P ∈ P and all i ∈ N , fi(P ) = Ph(i). Now symmetry implies that h

satisfies the following: for all permutations π : N → N and all i ∈ N ,

h(π(i)) = (π(h1(i)), π(h2(i))) . (4)

It is enough to show that for all i ∈ N , h(i) = (i, i). Now suppose, by contradiction,

that there is i ∈ N such that h(i) 6= (i, i). Let (j, k) ≡ h(i). Without loss of generality,

assume that k 6= i. Since n ≥ 3, there is ` ∈ N\{i, k}. Let π : N → N be the

transposition of k and `. Then h(π(i)) = h(i) = (j, k) but (π(h1(i)), π(h2(i))) =

(π(j), π(k)) = (j, `), contradicting (4).

Remark 1. When n = 2, there are other, non-liberal one-vote rules satisfying the axioms

in Theorem 2. In fact, parts (i) and (ii) of Theorem 2 are equivalent to the following

statement: (iii′) the rule f is (a) the liberal rule; or (b) such that for all P ∈ P ,

f(P ) = (P21, P12); or (c) such that for all P ∈ P , f(P ) = (P12, P21); or (d) such that for

all P ∈ P , f(P ) = (P22, P11). Therefore, when there are only two persons, four rules

satisfy the axioms in parts (i) or (ii). 4
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Proof of Remark 1. Let n = 2. As in the proof of Theorem 2, we can obtain a function

h : N → N ×N . By symmetry, h satisfies equation (4). Since n = 2, h(1) determines

h(2) as well: letting π : N → N be the transposition of 1 and 2, it follows that

h(2) = h(π(1)) = (π(h1(1)), π(h2(1))). For instance, if h(1) = (1, 2), then h(2) = (2, 1).

Since h(1) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}, we can define h in four different ways, thus

obtaining the four rules in Remark 1.

Remark 2. On the restricted domain in Example 1, there are numerous consent rules,

far from being liberal, which satisfy all axioms in parts (i) and (ii). The logical indepen-

dence of the three axioms in part (i) (also the two axioms in part (ii)) are established by

the following examples: one-vote rules (satisfying all but symmetry), constant “uniform

identification” rules (satisfying all but non-degeneracy),14 and plurality rules (satisfying

all but independence of irrelevant opinions). 4

5 Concluding Remarks

In the binary group identification model, independence of irrelevant opinions is vacuous;

decomposability is also mild since it coincides with self-duality. However, with three or

more groups, the two axioms become very demanding as shown by Theorems 1 and 2.

The contrasting consequences of these axioms in the binary and multinary setups are

similar to those in Arrovian preference aggregation with two alternatives and that with

three or more alternatives.15

We can extend our model to allow for “status-quo memberships”, and modify in-

dependence accordingly. Consider a mapping σ : N → G, associating with each person

i ∈ N her status quo membership σi ∈ G. For all k ∈ G, let qk ∈ N be the

consent quota for group k. The regrouping consent rule with the status quo

σ ≡ (σi)i∈N and quotas q ≡ (qk)k∈G, denoted by fσ,q, is defined as follows: for

all P ∈ P and all i ∈ N with Pii = k,

14A group, say group k is fixed and everyone always belongs to group k.
15When there are three or more alternatives, independence of irrelevant alternatives, transitivity,

and unanimity (or Pareto principle) imply dictatorship (Arrow’s Impossibility Theorem; Arrow, 1951).
When there are two alternatives, independence of irrelevant alternatives and transitivity are vacuous,
and there are numerous non-dictatorial aggregation rules that perform well in terms of, e.g., “mono-
tonicity” and “anonymity”.
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(i) if |{j ∈ N : Pji = k}| ≥ qk, then fσ,qi (P ) = k; and

(ii) otherwise, fσ,qi (P ) = σi.

Thus each person i ∈ N only belongs to the group of her own decision (Pii) or her

status quo group (σi). She can always decide to stay at the status quo; she needs

others’ consent only when she claims for a change. Although these rules are similar to

the consent rules with default decisions, the two families are different. For instance, in

the binary model, the regrouping consent rules do not coincide with the consent rules

by Samet and Schmeidler (2003).

To take account of the status quo memberships, independence of irrelevant opinions

can be relaxed by requiring the same independence only for those groups to which

persons do not initially belong. Thus, only when a person is assigned to a new group,

the membership decision for that group should be independent of opinions on the other

groups.

Regrouping Independence. Let P, P ′ ∈ P and k ∈ G. Suppose that for all i, j ∈ N ,

Pij = k if and only if P ′ij = k. Then for all i ∈ N with σi 6= k, fi(P ) = k if and only if

fi(P
′) = k.

Regrouping independence weakens independence of irrelevant opinions only slightly.

But interestingly, it is satisfied by the regrouping consent rules, which is a substantially

larger family of rules than the one-vote rules. Also, the regrouping consent rules satisfy

unanimity (hence, non-degeneracy) and if for all i, j ∈ N , σi = σj, they also satisfy

symmetry. When q1 = · · · = qm = 1, fσ,q coincides with the liberal rule.
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Supplementary Note for Reviewers

Extended Model and Applications

We now consider the extended framework where the issues arise not only of identifying

who is a J and who is a K, but also of simultaneously identifying who is a “J and K”,

who is a “J or K”, who is a “non-J and K”, who is a “J and non-K”, and who is a “non-J

and non-K”. A reduced form of this model focusing on binary identification is studied

by Miller (2008). Here we extend his model to deal with multinary identification.

In what follows, we call G the set of basic groups . Basic groups are not necessarily

mutually exclusive (i.e., a person can belong to two or more of them). Let G be

the Boolean algebra generated by the set of basic groups G through conjunction (∧),

disjunction (∨), and negation (¬). Let 1 ∈ G be the group “everyone” and 0 ∈ G the

group “no one”. We call the groups in G\G derived groups. A derived group is

complete if it is a conjunction of qualification or disqualification for all basic groups

in G. For example, when G = {a, b}, there are four complete groups, which are a ∧ b,
¬a ∧ b, a ∧ ¬b, and ¬a ∧ ¬b. Let Gc be the set of complete groups. Complete groups

are mutually exclusive and they cover the whole set N of persons.

An extended problem B ≡ (Bg)g∈G∈ BG is a profile of binary problems for all

groups in G satisfying the following property: for all g, g′ ∈ G, Bg∧g′ = Bg ∧ Bg′ ,

Bg∨g′ = Bg∨Bg′ , B1 = 1n×n, and B0 = 0n×n (so B¬g = 1n×n−Bg).1 Call this property

opinion-consistency . Let B be the set of all extended problems. Note that by

opinion-consistency, a profile (Bg)g∈G of binary problems for all basic groups generates

an (unique) extended problem. An extended decision x ≡ (xg)g∈G∈ ({0, 1}N)G is

a profile of decisions for all groups in G with x1 = 11×n and x0 = 01×n. An extended

decision x ≡ (xg)g∈G satisfies meet-consistency if for all g, g′ ∈ G, xg∧g
′
= xg ∧xg′ . It

satisfies join-consistency if for all g, g′ ∈ G, xg∨g
′
= xg ∨xg′ . Let (xk)k∈G be a profile

of decisions for all basic groups and call it a basic group decision . Then (xk)k∈G

generates an (unique) extended decision satisfying the two consistency properties.

1Notation: Bg ∧ Bg′ ≡
(

min{Bg
ij ,B

g′

ij}
)
i,j∈N

and Bg ∨ Bg′ ≡
(

max{Bg
ij ,B

g′

ij}
)
i,j∈N

. For all

xg, xg′ ∈ {0, 1}N , xg ∧ xg′
and xg ∨ xg′

are similarly defined.
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An extended rule F : B →
(
{0, 1}N

)G
maps each extended problem into an

extended decision. For all B ∈ B and all g ∈ G, let F g(B) be the group-g decision for

B assigned by the extended rule F . The extended rule F satisfies meet-consistency

(or join-consistency , respectively) if it always produces a meet-consistent (or join-

consistent) decision; i.e., for all B ∈ B and all g, g′ ∈ G, F g∧g′(B) = F g(B) ∧ F g′(B)

(or F g∨g′(B) = F g(B) ∨ F g′(B)).2 It satisfies consistency if it satisfies both meet-

consistency and join-consistency. It satisfies non-degeneracy if for all g ∈ G\{1, 0}
and all i ∈ N , there are B,B′ ∈ B such that F g

i (B) = 1 and F g
i (B′) = 0.

An extended rule F is an extended one-vote rule if for all i ∈ N , there are

j, h ∈ N such that for all B ∈B and all g ∈ G, F g
i (B) = Bg

jh. Clearly, all extended one-

vote rules are consistent. In fact, they are outliers of the very rich family of consistent

rules. A simple way of constructing a consistent extended rule is first to define a decision

rule for basic groups—let us call it a basic group rule—and second to extend the basic

group decisions to an extended decision using consistency. For example, we may use

the family of consent approval functions for basic group rules (Samet and Schmeidler,

2003). Let s,t ∈ {1, · · · , n} with s+ t ≤ n+ 2. The basic group consent rule with

(s, t) satisfies the following: for all B ∈ B, all k ∈ G, and all i ∈ N , (i) when Bk
ii = 1,

F k
i (B) = 1 if and only if |{j ∈ N : Bk

ji = 1}| ≥ s, and (ii) when Bk
ii = 0, F k

i (B) = 0

if and only if |{j ∈ N : Bk
ji = 0}| ≥ t. An extended consent rule is the consistent

extension of a basic group consent rule. Thus, by construction, all extended consent

rules are consistent.3

The extended consent rules show by example that in the extended setup, consistency

and non-degeneracy do not characterize the family of extended one-vote rules. This may

appear to be in conflict with Miller (2008). However, in Miller’s (2008) model, another

independence axiom, which we define below, is implicit.4 Once the independence axiom

is imposed in addition, the same characterization as in Miller (2008) holds. Yet the

independence axiom is stronger than independence of irrelevant opinions, and we show

that in fact, a weaker set of axioms suffices for the characterization.

2Miller (2008) calls these two properties meet separability and join separability.
3Alternatively, given (s, t), one may define a rule by applying conditions (i) and (ii) in the definition

of the basic group consent rule to all groups g ∈ G, basic and derived. However, this rule is not
consistent unless s = t = 1, in which case, the rule is just the liberal rule.

4We elaborate on this claim after we define component-wise independence.
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Now we introduce axioms for the extended setup. First is a straightforward exten-

sion of independence of irrelevant opinions :

Independence of Irrelevant Opinions. For all B,B′ ∈ B and all k ∈ G, if Bk = B′k,

then F k(B) = F k(B′).

Note that this axiom does not require independence across derived groups and so the

decision on a∧b may depend on Ba and Bb as well as on Ba∧b. It is evident by definition

that all extended consent rules are independent of irrelevant opinions.

Non-degeneracy in the multinary setup corresponds to the following axiom in the

extended setup.

Basic Group Non-Degeneracy. For all k ∈ G and all i ∈ N , there exist B,B′ ∈ B

such that F k
i (B) = 0 and F k

i (B′) = 1.

In our model, a decision associates with each person a membership for exactly one

basic group. In the extended model, this can be stated as follows.

Basic Group Partitioning. For all B ∈ B,
(
{i ∈ N : F k

i (B) = 1}
)
k∈G is a partition

of N .

In the presence of consistency, this implies that for all distinct pairs k, ` ∈ G, F k∧`(·)
is degenerate, taking the constant value of 01×n. This partitioning requirement may be

too strong in the extended model and a weaker version may be formulated by requiring

similar partitioning only when all persons agree with partitioning by basic groups.

Unanimous Basic Group Partitioning. For all B ∈ B, if each i ∈ N partitions N

into basic groups at B (i.e., for all i ∈ N , ({j ∈ N : Bk
ij = 1})k∈G is a partition of N),

then
(
{i ∈ N : F k

i (B) = 1}
)
k∈G is a partition of N .

In our model, each person believes that everyone is a member of exactly one group

in G. Thus, when viewed within the extended model, our model corresponds to the

restricted domain B∗ consisting of all problems B ∈ B such that
∑

k∈GBk = 1n×n.

Then for all B ∈ B∗ and all distinct pairs k, k′ ∈ G, Bk∧k′ = 0n×n and B1∨···∨m =

1n×n. Note that on this restricted domain, all persons agree with partitioning N into

basic groups and so basic group partitioning is equivalent to unanimous basic group

partitioning.
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Now we establish a result that corresponds to Theorem 1. Due to independence of

irrelevant opinions, our result holds both on the restricted domain B∗ and the whole

domain B.

Proposition 1. (i) If an extended rule F on B∗ (or B) satisfies independence of irrel-

evant opinions, basic group non-degeneracy, and unanimous basic group partitioning,

then there is an extended one-vote rule F̂ such that for all B ∈ B∗ (or B) and all

k ∈ G, F k(B) = F̂ k(B).

(ii) An extended rule F on B∗ (or B) satisfies independence of irrelevant opinions,

basic group non-degeneracy, unanimous basic group partitioning, and consistency if

and only if it is an extended one-vote rule.

Proof. We prove part (i) for the domain B and skip the simpler proof for B∗. Let F

be an extended rule on B satisfying the three axioms. Let f be the rule in our model

defined as follows using F : for all P ∈ P , all k ∈ G, and all i ∈ N ,

fi(P ) = k ⇔ F k
i (B) = 1 , (1)

where B is such that for all ` ∈ G, B` = BP,`. By unanimous basic group partitioning,

f is well-defined. Independence of irrelevant opinions and basic group non-degeneracy

of F imply independence of irrelevant opinions and non-degeneracy of f , respectively.

Thus by Theorem 1, f is a one-vote rule; there is h : N → N × N such that for all

P ∈ P , fi(P ) = Ph(i). Let F̂ be the extended one-vote rule such that for all B ∈ B, all

g ∈ G\{1, 0}, and all i ∈ N , F̂ g
i (B) = Bg

h(i).

Let B ∈ B∗. There is P ∈ P such that for all k ∈ G, Bk = BP,k. Since fi(P ) = Ph(i),

(1) implies that for all k ∈ G, F k(B) = F̂ k(B).

Let B ∈ B\B∗. Let k ∈ G. There are binary problems (B′`)`∈G\{k} such that

Bk +
∑

`∈G\{k}B
′` = 1n×n. Then the profile

(
Bk, (B′`)`∈G\{k}

)
of binary problems for

all basic groups generates an extended problem in B∗. Denote by B′′ the extended

problem so generated. By the argument in the previous paragraph, F k(B′′) = F̂ k(B′′).

Note that B′′k = Bk. Since both F and F̂ are independent of irrelevant opinions,

F k(B) = F̂ k(B).

Part (ii) follows directly from part (i) and consistency.
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Remark 1. Part (i) shows that even without consistency, we cannot get much far away

from the extended one-vote rules. It also reveals that the family of rules we characterize

in the multinary model is similar to but larger than the family of rules Miller (2008)

characterizes.

On the other hand, if independence of irrelevant opinions is dropped in part (ii),

one can find a rich family of rules, quite different from the one-vote rules, satisfying the

other axioms. For example, fix a default group ν ∈ G and a profile of consent quotas

q ≡ (qk)k∈G\{ν} for basic groups other than ν, where for all k ∈ G\{ν}, qk ∈ {1, · · · , n}.
Define an extended rule q,νF as follows: for all B ∈ B and all i ∈ N , (i) for all

k ∈ G\{ν}, (i.a) if Bk
ii = 1 and |{j ∈ N : Bk

ji = 1}| ≥ qk, then q,νF k
i (B) = 1,

(i.b) otherwise, q,νF k
i (B) = 0 ; (ii) q,νF ν

i (B) = 1 if and only if for all k ∈ G\{ν},
q,νF k

i (B) = 0; and (iii) for all derived groups g ∈ G\G, q,νF g
i (B) is the consistent

extension of the basic group decisions (q,νF k(B))k∈G. These rules satisfy all axioms

in in the proposition except for independence of irrelevant opinions. To take another

example, consider the extended plurality rule, denoted PL (similar to the plurality rules

in our model) and defined as follows: for all B ∈ B, (i) for all k ∈ G, and all i ∈ N ,

PLki (B) = 1 if and only if for all k′ ∈ G, |{j ∈ N : Bk
ji = 1}|≥|{j ∈ N : Bk′

ji = 1}|;
(ii) for all other derived groups g ∈ G\G, PLg(B) is the consistent extension of the

basic group decisions
(
PLk(B)

)
k∈G. It is clear that this rule violates independence

of irrelevant alternatives but satisfies non-degeneracy. However, there can be two or

more basic groups to which a person i belongs under PL. This can occur even for

problems in B∗ and so PL violates unanimous basic group partitioning. However, we

can define a “refinement” of PL using a linear ordering � over basic groups, denoted
�PL, as follows: for all B ∈ B, (i) for all k ∈ G, and all i ∈ N , �PLki (B) = 1 if

and only if for all k′ ∈ G\{k}, either [|{j ∈ N : Bk
ji = 1}|>|{j ∈ N : Bk′

ji = 1}|]
or [|{j ∈ N : Bk

ji = 1}|=|{j ∈ N : Bk′
ji = 1}| and k′ � k]; (ii) for all derived

groups g ∈ G\G, �PLg(B) is the consistent extension of the basic group decisions(�PLk(B)
)
k∈G. Then this rule satisfies unanimous basic group partitioning too. We,

therefore, find that in part (ii) of the proposition, independence of irrelevant opinions

plays a much more significant role than consistency.

Also, some extended one-vote rules violate basic group partitioning on B. Thus,
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unanimous basic group partitioning in the proposition cannot be replaced by basic

group partitioning. 4

In Miller’s (2008) model, a decision rule takes as an argument only one component

of B, say Bg for some g ∈ G. Thus, the identification of group g only depends on Bg.

This means that the following property is implicitly assumed.

Component-wise Independence. For all B,B′ ∈ B and all g ∈ G, if Bg = B′g, then

F g(B) = F g(B′).

This axiom requires independent decision making across derived groups as well as across

basic groups. It is quite stronger than independence of irrelevant opinions. In fact,

most extended consent rules violate it. For example, consider the extended “majority”

consent rule with s = t = n+1
2

. Then for all i ∈ N and all k ∈ G, person i belongs

to group k if and only if a majority believes her to be a member of group k, that is,

|{j ∈ N : Bk
ji = 1}| ≥ n+1

2
. Let i ∈ N . Consider B ∈ B such that (i) a majority

identifies i as a member of group k; (ii) a majority identifies i as a member of group `,

and (iii) only a minority (less than n+1
2

) identifies i as a member of group k ∧ `. Then

for B, the extended majority consent rule determines i as a member of groups k (by

(i)), ` (by (ii)), and k ∧ ` (by consistency). Now consider B′ ∈ B such that (i′) a

minority identifies i as a member of group k; and (ii′) B′k∧` = Bk∧`. For B′, the

extended majority consent rule determines i as a member of neither k (by (i′)) nor

k ∧ ` (by consistency). Thus, although B and B′ agree on the membership for group

k ∧ `, the extended majority consent rule assigns different decisions to them, violating

component-wise independence. It can be shown that only one extended consent rule is

component-wise independent : the extended consent rule with s = t = 1, namely the

liberal rule.

Adding component-wise independence, the characterization of the extended one-vote

rules as in Miller (2008) can be obtained directly from his result.

Proposition 2 (Miller, 2008). An extended rule on B satisfies component-wise in-

dependence, non-degeneracy, and (meet and join) consistency if and only if it is an

extended one-vote rule.

Proof. To prove the nontrivial direction, let F be an extended rule satisfying the three

axioms. Define φ : G × B → {0, 1}N such that for all g ∈ G and all B ∈ B, φ(g,B) ≡
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F g(B) for some B ∈ B with Bg = B. Then by By component-wise independence, φ

is well defined and for all B ∈ B and all g ∈ G, F g(B) = φ(g,Bg). Now applying

Theorem 2.5 in Miller (2008) to φ(·), we conclude that F is an extended one-vote

rule.

In fact, we can obtain results that are stronger than Proposition 2 as corollaries to

Theorem 1. Further, it turns out that the “decisive votes” that feature the extended

one-vote rules emerge even in the absence of consistency. To this end, we introduce

three axioms whose scope of application is restricted to complete groups. The following

axiom, weaker than component-wise independence, requires decisions to be independent

across complete groups.

Complete Group Independence. For all B,B′ ∈ B and all g ∈ Gc, if Bg = B′g,

then F g(B) = F g(B′).

Next is the restriction of non-degeneracy to complete groups.

Complete Group Non-Degeneracy. For all g ∈ Gc and all i ∈ N , there exist

B,B′ ∈ B such that F g
i (B)=0 and F g

i (B′) = 1.

Finally, since complete groups are mutually exclusive, we require that the decisions

on complete groups partition N . This is weaker than consistency.

Complete Group Partitioning. For all B ∈ B, ({i ∈ N : F g
i (B) = 1})g∈Gc is a

partition of N .

Applying Theorem 1, we obtain the following result.

Proposition 3. (i) If an extended rule F on B satisfies complete group independence,

complete group non-degeneracy, and complete group partitioning, then there is an

extended one-vote rule F̂ such that for all B ∈ B and all g ∈ Gc, F g(B) = F̂ g(B).

(ii) An extended rule F on B satisfies complete group independence, complete group

non-degeneracy, and consistency if and only if it is an extended one-vote rule.

Proof. Part (i). Let F be a rule satisfying the three axioms. Let K ≡ {1, · · · , 2m} and

fix a one-to-one correspondence θ : K → Gc. For each B ∈ B, by opinion-consistency,

there is P ∈ KN×N such that for all i, j ∈ N and all k ∈ K,

Pij = k ⇔ B
θ(k)
ij = 1 . (2)
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Conversely, for each P ∈ KN×N , there is B ∈ B satisfying (2). In fact, (2) defines a

one-to-one correspondence Θ: KN×N → B. Let f : KN×N → KN be defined as follows:

for all P ∈ KN×N and all i ∈ N , fi(P ) = k if F
θ(k)
i (Θ(P )) = 1. By complete group

partitioning, f is well-defined. Complete group independence of F implies independence

of irrelevant opinions of f . Complete group non-degeneracy of F implies non-degeneracy

of f . Finally, applying Theorem 1, we conclude that f is a one-vote rule, which gives

the desired conclusion.

Part (ii). To prove the non-trivial direction, let F be a rule satisfying complete group

independence, complete group non-degeneracy, and consistency. Since consistency im-

plies complete group partitioning, part (i) holds and the decision on any complete group

by F coincides with the decision by an extended one-vote rule. Then by consistency,

we conclude that the decision on any other group by F also coincides with the decision

by the extended one-vote rule.

Remark 2. This proposition can be used to prove Theorem 2.5 in Miller (2008) as

follows. Consider a rule φ : G × B → {0, 1}N satisfying the axioms of consistency

(“separability” as Miller calls it) and non-degeneracy in his theorem. Now use this

rule φ to define an extended rule F such that for all B ∈ B, all g ∈ G, and all

i ∈ N , F g
i (B) ≡ φi(g,B

g). By construction, F satisfies component-wise independence.

Also, consistency and non-degeneracy of φ imply consistency and non-degeneracy of F ,

respectively. Hence, part (ii) of the proposition implies that F is an extended one-vote

rule and φ is a one-vote rule, as defined in Miller’s (2008) model. 4

Remark 3. Part (ii) of the proposition strengthens Proposition 2 by weakening component-

wise independence to complete group independence. Also, part (i) indicates that even

if consistency is dropped in part (ii) (while complete group partitioning is retained), we

cannot get that far way from the extended one-vote rules. Any rule satisfying the other

axioms coincides with an extended one-vote rule on its decisions for complete groups.

However, if complete group independence is dropped, all extended consent rules satisfy

the other axioms in part (ii). As in Remark 1, the independence axiom here, complete

group independence, plays a much more significant role than consistency. 4

Note that on the restricted domain B∗, independence of irrelevant opinions is equiv-

alent to complete group independence. Also, in the presence of the basic property
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“unanimity” (if Bk = 0n×n, F k(B) = 01×n), (unanimous) basic group partitioning is

equivalent to complete group partitioning. Thus, on the restricted domain B∗, we obtain

almost the same results using the two sets of axioms.

It should be noted that both component-wise independence and complete group

independence are quite more demanding than independence of irrelevant opinions. For

simplicity, suppose that G = {a, b}. Component-wise independence and complete group

independence require that for a decision on who are “a and b” (a ∧ b), we should only

pay attention to opinions on who are “a and b” (a ∧ b) and ignore any other opinions,

including the opinions on who are a and on who are b, which do not seem irrelevant to the

decision on “a and b”. For example, there are many cases of Ba and Bb which give rise

to the same opinions on a ∧ b, Ba∧b = 0n×n, such as when Ba = 0n×n and Bb = 0n×n,

when Ba = 1n×n and Bb = 0n×n, and when Ba =

(
1k×k 0k×(n−k)

0(n−k)×k 1(n−k)×(n−k)

)
and

Bb =

(
0k×k 1k×(n−k)

1(n−k)×k 0(n−k)×(n−k)

)
. The two independence axioms require that in all

these different cases, there should be the same decision on a ∧ b, which seems too

strong. Such an independence is not demanded by independence of irrelevant opinions

since it requires independent decisions only across basic groups.
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